If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-651=0
a = 1; b = -10; c = -651;
Δ = b2-4ac
Δ = -102-4·1·(-651)
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2704}=52$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-52}{2*1}=\frac{-42}{2} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+52}{2*1}=\frac{62}{2} =31 $
| -2(5y-4)-y=-2(y-2) | | 8/8=h/5 | | 11=11+a4 | | -v4-11=-8 | | 9x-2x+6=x-9+15 | | -73=-6u-13 | | —73=—6u—13 | | 7=3+v2 | | 9t-2=43 | | 15=9+6b | | -16=-c6-16 | | 48=-7r-15 | | 4^8^-x=1/64 | | -1/3+1/4=n | | (11x/16)+(3/8)=(5x/8) | | -7x-8=-10x+12 | | 81=m+49 | | 3(3+x)=2x | | X-12=3/2x-3 | | 3x+47+10+x+26=27+x | | 3x+47+9+2x-19=23 | | 3(-5x+4)5x-1=-39 | | -2=-5t+10+2t= | | 2x-19+9+x-6=23 | | 5(x-+1)=4(x-1) | | X+-6+9+2x-19=23 | | 8+5n=8n+2 | | 7x^2+5=1,377 | | 2÷3y+4=8 | | -4x+3x=2= | | -5(-2x+4)-1=12 | | 3x-15+7x=30 * |